NCERT EXEMPLAR SELECTED PROBLEMS: PROBLEM 9 ON ITF

47. The result
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy} \right)$$
 is true when value of xy is

Sol. We have
$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy} \right)$$

Let $\tan^{-1} x = \alpha$ and $\tan^{-1} y = \beta$, where $\alpha, \beta \in (-\pi/2, \pi/2)$

Now
$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$
$$= \frac{x - y}{1 + xy}$$

$$\Rightarrow \tan^{-1}(\tan(\alpha-\beta)) = \tan^{-1}\frac{x-y}{1+xy}$$
 (i)

Now
$$\tan^{-1}(\tan(\alpha-\beta)) = \alpha - \beta$$
 only if $\alpha - \beta \in (-\pi/2, \pi/2)$

Let $\alpha, \beta < 0$

$$\therefore \qquad \alpha, \beta \in (-\pi/2, 0)$$

$$\therefore \qquad \alpha \in (-\pi/2, 0) \text{ and } '-\beta' \in (0, \pi/2)$$

$$\therefore \qquad \alpha - \beta \in (-\pi/2, \pi/2)$$

$$\Rightarrow \tan^{-1}(\tan(\alpha-\beta)) = \alpha-\beta$$

$$\Rightarrow \tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy} \right)$$
 (From (i))

Similarly for α , $\beta > 0$, we get

Similarly for α , $\beta > 0$, we get

$$\tan^{-1} x - \tan^{-1} y = \tan^{-1} \left(\frac{x - y}{1 + xy} \right)$$

Let $\alpha > 0$ and $\beta < 0$

$$\therefore \qquad \alpha, '-\beta' \in (0, \pi/2)$$

$$\therefore \quad \alpha - \beta \in (0, \pi)$$

But we must have $\alpha - \beta \in (0, \pi/2)$

$$\Rightarrow \qquad \alpha - \beta < \pi/2$$

$$\Rightarrow \qquad \alpha < \pi/2 + \beta$$

$$\Rightarrow \qquad \tan \alpha < \tan (\pi/2 + \beta)$$

$$\Rightarrow \qquad \tan \alpha < -\cot \beta$$

$$\Rightarrow \qquad \tan \alpha < -\frac{1}{\tan \beta}$$

$$\Rightarrow \qquad \tan \alpha \tan \beta > -1 \qquad (as \tan \beta < 0)$$

$$\Rightarrow \qquad xy > -1$$
Similarly we get condition $xy > -1$ when $\alpha < 0$ and $\beta > 0$